PATHOS Dissemination |
Outreach activities and public talks
https://www.rtve.es/play/videos/telediario/telediario-15-horas-17-09-20/5665004/?t=35m37s, minute 35:30;
- Israel24 TV network: https://video.i24news.tv/details/_6184883468001; from minute 5 onward
- Bruker video interview: https://www.bruker.com/it/products-and-solutions/mr/make-mr-more-relevant/covid19-nmr-consortium.html,
- Written article: https://www.bruker.com/en/landingpages/bbio/resolution-in-a-new-dimension-for-solving-challenges-of-society/israeli-scientists-collaborate-to-speed-up-covid-19-rna-research-using-ultra-sensitive-nmr-techniques.html.
- WEIZMANN
- Outreach describing the Covid-related implication of this project:
https://www.rtve.es/play/videos/telediario/telediario-15-horas-17-09-20/5665004/?t=35m37s, minute 35:30;
- Israel24 TV network: https://video.i24news.tv/details/_6184883468001; from minute 5 onward
- Bruker video interview: https://www.bruker.com/it/products-and-solutions/mr/make-mr-more-relevant/covid19-nmr-consortium.html,
- Written article: https://www.bruker.com/en/landingpages/bbio/resolution-in-a-new-dimension-for-solving-challenges-of-society/israeli-scientists-collaborate-to-speed-up-covid-19-rna-research-using-ultra-sensitive-nmr-techniques.html.
- HUJI
- Lecture to high-school students as part of the ALPHA excellence program, July 2021.
- Member of the scientific committee of an online workshop connecting HUJI and OIST, Japan. Presented relevant research and plans for fostering collaborations.
- QuanTEEM Winter School, lecture by N. Bar-Gill, Dijon, Feb. 2024
- UNIFI
- PATHOS-funded research on quantum sensing has been publicly discussed by the PATHOS coordinator on the Italian state-owned broadcast TV service (RAI) and in particular in the news channel programmes as TGR Leonardo and RAINEWS24, enjoying a great national viewership. This was also advertised by social media, several press offices and also by our dissemination channels.
- Invited talk on “The science of measurement and quantum standards for accurate measurement technology”, Conf. Accademia Nazionale dei Lincei - Metrology and INspiration for Science, March 2021.
- Invited seminar on “Quantum metrology tools and smart sensors for industry and society”, Biennale Tecnologia Torino, November 2020.
- Invited talk on “Smart materials that respond to their environment”, Invitation to Biological and bio-inspired optics, a Faraday Discussion meeting, July 2020
- TUDO
- ‘Rechnen mit Quanten: Die Supercomputer der Zukunft’, Dieter Suter, Meet your prof, June 2020, Dortmund (Germany).
- INRIM
- "La scienza e i suoi tempi", https://www.youtube.com/watch?v=4NEREdh46fc&t=454s
Open-Access Publications
1. Hoang-Van Do, Cosimo Lovecchio, Ivana Mastroserio, Nicole Fabbri, Francesco S Cataliotti, Stefano Gherardini, Matthias M Müller, Nicola Dalla Pozza, Filippo Caruso. Experimental proof of quantum Zeno-assisted noise sensing. New J. Phys. 21, 113056 (2019)
2. Nicola Dalla Pozza, Stefano Gherardini, Matthias M. Müller, Filippo Caruso. Role of the filter functions in noise spectroscopy. International Journal of Quantum Information 17, 1941008 (2019) - Eprint arXiv:1911.10598
3. Matthias M. Müller, Stefano Gherardini, Nicola Dalla Pozza, Filippo Caruso. Noise sensing via stochastic quantum Zeno. Phys. Lett. A 384, 126244 (2020) - Eprint arXiv:1910.09251
4. Nicola Dalla Pozza, Filippo Caruso. Quantum Stochastic Walk models for quantum state discrimination. Phys. Lett. A 384, 126195 (2020).
5. D. Farfurnik, N. Bar-Gill. Characterizing spin-bath parameters using conventional and time-asymmetric Hahn-echo sequences. Physical Review B 101, 104306 (2020) - Eprint arXiv:1904.01233
6. A. Pick, S. Silberstein, N. Moiseyev, N. Bar-Gill. Robust mode conversion in NV centers using exceptional points. Physical Review Research 1, 013015 (2019)
7. K. I. O. Ben 'Attar, D. Farfurnik, N. Bar-Gill. Hamiltonian engineering of general two-body spin-1/2 interactions. Physical Review Research 2, 013061 (2020)
8. I. Meirzada, S. A. Wolf, A. Naiman, U. Levy, N. Bar-Gill. Enhanced spin state readout of nitrogen-vacancy centers in diamond using infrared fluorescence. Physical Review B 100, 125436 (2019) - Eprint arXiv:1906.05055
9. Victor Mukherjee, Abraham G. Kofman, Gershon Kurizki. Anti-Zeno quantum advantage in fast-driven heat machines. Communications Physics 3, 8 (2020)
10. Victor Mukherjee, Analia Zwick, Arnab Ghosh, Xi Chen, Gershon Kurizki. Enhanced precision bound of low-temperature quantum thermometry via dynamical control. Communications Physics 2, 162 (2019)
11. K. Rama Koteswara Rao, Yihua Wang, Jingfu Zhang, Dieter Suter. Optimal photon energies for initialization of hybrid spin quantum registers of nitrogen-vacancy centers in diamond. Phys. Rev. A 101, 013835 (2020) - Eprint arXiv:1902.10513
12. Alice Boschetti, Andrea Taschin, Paolo Bartolini, Anjani Kumar Tiwari, Lorenzo Pattelli, Renato Torre, Diederik S. Wiersma. Spectral super-resolution spectroscopy using a random laser. Nature Photonics 14, 177 (2020).
13. Or Szekely, Gregory Lars Olsen, Mihajlo Novakovic, Rina Rosenzweig, Lucio Frydman. Assessing Site-Specific Enhancements Imparted by Hyperpolarized Water in Folded and Unfolded Proteins by 2D HMQC NMR. J. Am. Chem. Soc. 142, 20, 9267–9284 (2020).
14. E. Moreva, E. Bernardi, P. Traina, A. Sosso ,S. Ditalia Tchernij, J. Forneris, F. Picollo, G. Brida, Ž. Pastuovic, I. P. Degiovanni, P. Olivero,and M. Genovese. Practical Applications of Quantum Sensing: A Simple Method to Enhance the Sensitivity of Nitrogen-Vacancy-Based Temperature Sensors. Phys Rev. App. 13, 054057 (2020).
15. E. Rebufello, F. Piacentini, A. Avella., M. A. de Souza, M. Gramegnaa, J. Dziewiord, E. Cohen, L.Vaidman, I.P. Degiovanni, M. Genovese. Experimental realization of robust weak measurements. Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology II, edited by Selim M. Shahriar, Jacob Scheuer, Proc. of SPIE Vol. 11296, 112964B (2020).
16. Swathi S. Hegde, Jingfu Zhang, Dieter Suter. Efficient quantum gates for individual nuclear spin qubits by indirect control. Eprint arXiv:1905.01649, Phys. Rev. Lett. 124, 220501 (2020).
17. Nicola Dalla Pozza, Filippo Caruso. Quantum State Discrimination on Reconfigurable Noise-Robust Quantum Networks. Eprint arXiv:2003.11586 (2020), Phys. Rev. Research 2, 043011 (2020).
18. Analia Zwick, Dieter Suter, Gershon Kurizki, Gonzalo A. Alvarez. Precision limits of tissue microstructure characterization by Magnetic Resonance Imaging. Eprint arXiv:1912.12239 (2019), Phys. Rev. Applied 14, 024088 (2020).
19. D. D. Bhaktavatsala Rao, Arnab Ghosh, David Gelbwaser-Klimovsky, Nir Bar-Gill, Gershon Kurizki. Spin-bath polarisation via disentanglement. New J. Phys. 22, 083035 (2020).
20. Jingfu Zhang, Swathi S. Hegde, Dieter Suter. Efficient Implementation of a Quantum Algorithm in a Single Nitrogen Vacancy Center of Diamond. Eprint arXiv:1911.06371 (2019), Phys. Rev. Lett. 125, 030501 (2020).
21. Ettore Bernardi, Ekaterina Moreva, Paolo Traina, Giulia Petrini, Sviatoslav Ditalia Tchernij, Jacopo Forneris, Zelijko Pastuovic, Ivo Pietro Degiovanni, Paolo Olivero, M. Genovese. A biocompatible technique for magnetic field sensing at (sub)cellular scale using Nitrogen-Vacancy centers. EPJ Quantum Technology 7, 13 (2020).
22. Valeria Cimini, Stefano Gherardini, Marco Barbieri, Ilaria Gianani, Marco Sbroscia, Lorenzo Buffoni, Mauro Paternostro, Filippo Caruso. Experimental characterization of the energetics of quantum logic gates. npj Quantum Information 6, 96 (2020).
23. Anna Wacker et al. Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy. Nucleic Acids Research 48 (22), 12415-12435 (2020).
24. Mihajlo Novakovic et al. Magnetization Transfer to Enhance NOE Cross‐Peaks among Labile Protons: Applications to Imino–Imino Sequential Walks in SARS‐CoV‐2‐Derived RNAs. Angew. Chem. Int. Ed. 60, 11884–1189 (2021).
25. Mihajlo Novakovic et al. Sensitivity enhancement of homonuclear multidimensional NMR correlations for labile sites in proteins, polysaccharides, and nucleic acids. Nat. Commun. 11, 5317 (2020).
26. G. Petrini et al. Is a Quantum Biosensing Revolution Approaching? Perspectives in NV-Assisted Current and Thermal Biosensing in Living Cells. Adv. Quantum Technol. 3, 2000066 (2020).
27. Y. Ninio et al. High-Sensitivity, High-Resolution Detection of Reactive Oxygen Species Concentration Using NV Centers. Eprint arXiv:2107.00398, ACS Photonics 8, 7, 1917–1921 (2021).
28. Genko T. Genov, Yachel Ben-Shalom, Fedor Jelezko, Alex Retzker, Nir Bar-Gill. Efficient and robust signal sensing by sequences of adiabatic chirped pulses. Phys. Rev. Research 2, 033216 (2020).
29. Stefano Gherardini, Stefano Marcantoni, and Filippo Caruso. Irreversibility mitigation in unital non-Markovian quantum evolutions. Phys. Rev. Research 2, 033250 (2020).
30. Paolo Braccia, Filippo Caruso, and Leonardo Banchi. How to enhance quantum generative adversarial learning of noisy information. New J. Phys. 23 053024 (2021).
31. M. Tahir Naseem, Avijit Misra, Özgür E. Müstecaplioğlu, and Gershon Kurizki. Minimal quantum heat manager boosted by bath spectral filtering. Phys. Rev. Research 2, 033285 (2020).
32. Tomas Opatrný, Avijit Misra, and Gershon Kurizki. Work Generation from Thermal Noise by Quantum Phase-Sensitive Observation. Eprint arXiv:2106.09653, Phys. Rev. Lett. 127, 040602 (2021).
33. Jihyun Kim et al. 3D Heteronuclear Magnetization Transfers for the Establishment of Secondary Structures in SARS-CoV-2-Derived RNAs. J. Am. Chem. Soc. 143, 13, 4942–4948 (2021).
34. Mihajlo Novakovic et al. The Incorporation of Labile Protons into Multidimensional NMR Analyses: Glycan Structures Revisited. J. Am. Chem. Soc. 143, 23, 8935–8948 (2021).
35. S. Virzi’, A. Avella, F. Piacentini, M. Gramegna, T. Opatrny, A.G. Kofman, G. Kurizki, S. Gherardini, F. Caruso, I.P. Degiovanni, M. Genovese. Quantum Zeno and Anti-Zeno probes of noise correlations in photon polarisation. Phys. Rev. Lett. 129, 030401 (2022).
36. I. Gianani, I. Mastroserio, L. Buffoni, N. Bruno, L. Donati, V. Cimini, M. Barbieri, F.S. Cataliotti, and F. Caruso. Experimental Quantum Embedding for Machine Learning. Adv. Quantum Technol. 5, 2100140 (2022) - selected as journal front cover picture.
37. S. Gherardini, A. Smirne, S.F. Huelga, and F. Caruso. Transfer-tensor description of memory effects in open-system dynamics and multi-time statistics. Eprint arXiv:2101.11662, Quantum Sci. Technol. 7, 025005 (2002).
38. S. Gherardini, M. Mueller, T. Calarco, S. Montangero, and F. Caruso. Information flow and error scaling for fully-quantum control. Phys. Rev. Research 4, 023027 (2022).
39. M. Mueller, S. Gherardini, S. Montangero, T. Calarco, and F. Caruso. Information Theoretical Limits for Quantum Optimal Control Solutions: Error Scaling of Noisy Channels. Sci. Rep. 12, 21405 (2022).
40. P. Braccia, L. Banchi, and F. Caruso. Quantum Noise Sensing by generating Fake Noise. Eprint arXiv:2107.08718, Phys. Rev. Applied 17, 024002 (2022).
41. N. Dalla Pozza, L. Buffoni, S. Martina, and F. Caruso. Quantum Reinforcement Learning: the Maze problem. Quantum Machine Intelligence 4, 11 (2022).
42. A. Laneve, A. Geraldi, F. Hamiti, P. Mataloni, and F. Caruso. Experimental multi-state quantum discrimination through a Quantum network. Quantum Sci. Technol. 7, 025028 (2022).
43. T. Chakraborty, J. Zhang and D. Suter. Optimization of a quantum control sequence for initializing a nitrogen-vacancy spin register. Eprint arXiv:2107.01116, Phys. Rev. A 105, 022622 (2022).
44. S. Gherardini, H.J. van Waarde, P. Tesi, and F. Caruso. Topology identification of autonomous quantum dynamical networks. Eprint arXiv:2111.00812, Phys. Rev. A 106, 052426 (2022).
45. G. Petrini, G. Tomagra, E. Bernardi, E. Moreva, P. Traina, A. Marcantoni, F. Picollo, K. Kvaková, P. Cígler, I.P. Degiovanni, V. Carabelli, M. Genovese. Nanodiamond-Quantum Sensors Reveal Temperature Variation Associated to Hippocampal Neurons Firing. Adv. Sci. 9, 2202014 (2022).
46. M. Xu, J. Stockburger, G. Kurizki, and J. Ankerhold. Minimal quantum thermal machine in a bandgap environment: non-Markovian features and anti-Zeno advantage. New J. Phys. 24, 035003 (2022).
47. A.G. Kofman and G. Kurizki. Does Decoherence Select the Pointer Basis of a Quantum Meter? Entropy 24, 106 (2022).
48. R.P. Martinho, M.G. Jain, L. Frydman. High-field ex vivo and in vivo two-dimensional nuclear magnetic resonance spectroscopy in murine brain: Resolving and exploring the molecular environment. NMR in Biomedicine, e4833 (2022).
49. S.S. Hedge, J. Zhang, D. Suter. Toward the Speed Limit of High-Fidelity Two-Qubit Gates. Eprint arXiv:2205.02324, Phys. Rev. Lett. 128, 230502 (2022).
50. M. Genovese. Experimental quantum enhanced optical interferometry. Eprint arXiv:2101.02891, AVS Quantum Science 3, 044702 (2021).
51. S. Martina, L. Buffoni, S. Gherardini, F. Caruso. Learning the noise fingerprint of quantum devices. Quantum Machine Intelligence 4, 8 (2022).
52. S. Martina, S. Gherardini, L. Buffoni, F. Caruso. Noise fingerprints in quantum computers: Machine learning software. Software Impacts 12, 100260 (2022).
53. C. Hilty, D. Kurzbach, L. Frydman. Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nature Protocols 17, 1621-1657 (2022).
54. J. Kim, M. Novakovic, S. Jayanthi, A. Lupulescu, Ē. Kupče, J.T. Grün, K. Mertinkus, A. Oxenfarth, H. Schwalbe, L. Frydman. The Extended Hadamard Transform: Sensitivity-Enhanced NMR Experiments Among Labile and Non-Labile 1Hs of SARS-CoV-2-derived RNAs. ChemPhysChem 23, e202100704 (2022).
55. M.J. Jaroszewicz, M. Novakovic, L. Frydman. On the potential of Fourier-encoded saturation transfers for sensitizing solid-state magic-angle spinning NMR experiments. J. Chem. Phys. 156, 054201 (2022).
56. M. Novakovic, S. Jayanthi, A. Lupulescu, M.G. Concilio, J. Kim, D. Columbus, I. Kuprov, L. Frydman. Heteronuclear transfers from labile protons in biomolecular NMR: Cross polarization, revisited. Eprint arXiv:2109.01079, Journal of Magnetic Resonance 333, 107083 (2021).
57. D.B. Rao Dasari, S. Yang, A. Chakrabarti, A. Finkler, G. Kurizki, J. Wrachtrup. Anti-Zeno purification of spin baths by quantum probe measurements. Nature Communications 13, 7527 (2022).
58. J.C. Howell, M. Kahn, E. Grynszpan, Z.R. Cohen, S. Residori, U. Bortolozzo. Doppler Gyroscopes: Frequency vs Phase Estimation. Phys. Rev. Lett. 129, 113901 (2022).
59. A. Boschetti, L. Pattelli, R. Torre, D. S. Wiersma. Perspectives and recent advances in super-resolution spectroscopy: Stochastic and disordered-based approaches. Appl. Phys. Lett. 120, 250502 (2022).
60. S. Das, J. Zhang, S. Martina, D. Suter, F. Caruso. Experimental quantum pattern recognition in IBMQ and diamond NVs. Quantum Machine Intelligence 5, 16 (2023).
61. R. P. Martinho and L. Frydman, “Harnessing water to enhance quadrupolar NMR spectroscopy and imaging ", Chem. Eur. Journal, 28, e202201490 (2022). Cover of December issue.
62. S. Virzì et al., Sensing microscopic noise events by frequent quantum measurements. Phys. Rev. Applied 21, 034014 (2024)
63. Rotem Malkinson, Mohan Kumar Kuntumalla, Arsène Chemin, Tristan Petit, Alon Hoffman and Nir Bar-Gill, Enhanced quantum properties of shallow diamond atomic defects through nitrogen surface termination, Journal of Materials Chemistry C, 2024.
64. Pavel Penshin, Tamara Amro, Ty Zabelotsky, Amir Abramovich, Tanmoy Pandit, K. I. O Ben 'Attar, Amir Hen, Raam Uzdin, Nir Bar-Gill, Realization of robust quantum noise characterization in the presence of coherent errors, AVS Quantum Science (accepted), 2024.
65. Sreetama Das, Filippo Caruso, A hybrid-qudit representation of digital RGB images, Scientific Reports 13, 13671 (2023).
66. Sreetama Das, Jingfu Zhang, Stefano Martina, Dieter Suter, Filippo Caruso, Quantum pattern recognition on real quantum processing units, Quantum Machine Intelligence 5, 16 (2023).
67. S. Martina, S. Hernández-Gómez, S. Gherardini, F. Caruso, N. Fabbri. Deep learning enhanced noise spectroscopy of a spin qubit environment. Mach. Learn.: Sci. Technol. 4 02LT01, 2023.
68. J. Zhang, S. S. Hegde, and D. Suter. Fast Quantum State Tomography in the Nitrogen Vacancy Center of Diamond. Phys. Rev. Lett. 130, 090801 (2023).
69. J. Zhang and D. Suter. Single NV centers as sensors for radio-frequency fields. Phys. Rev. Res. 5, L022026 (2023).
70. A. Savitsky, J. Zhang, and D. Suter. Variable bandwidth, high efficiency microwave resonator for control of spin-qubits in nitrogen-vacancy centers. Review of Scientific Instruments 94, 023101 (2023).
71. S. Virzì, L.T. Knoll, A. Avella, F. Piacentini, S. Gherardini, M. Gramegna, G. Kurizki, A. G. Kofman, I.P. Degiovanni, M. Genovese, and F. Caruso. Sensing microscopic noise events by frequent quantum measurements. Physical Review Applied, 21(3), p.034014 2024.
72. M. Novakovic, J. Kim, X-C Su and L. Frydman, “Relaxation-assisted magnetization transfer phenomena for sensitivity-enhanced 2D NMR”, Anal. Chem. 95, 18091–18098 (2023). Featured cover, December issue.
73. J. Kim, J. T. Grün, M. Novakovic, E. Kupce, R. Rosenzweig and L. Frydman, “Cross-Polarization Schemes for Improved Heteronuclear Transfers Involving Labile Protons in Biomolecular Solution NMR”, Angew. Chem., 62, e202304900 (2023).
74. T. Wolf, A. Eden-Cossoy and L. Frydman, “Indirectly Detected Satellite-Transition Quadrupolar NMR via Progressive Saturation of the Proton Reservoir”, Shimon Vega Memorial Issue, Solid State NMR, 101862 (2023).
75. J. T. Grün, J. Kim, S. Jayanthi, A. Lupulescu, E. Kupce, A. Oxenfarth, H. Schwalbe and L. Frydman, “Identifying and Overcoming Artifacts in 1H-based Saturation Transfer NOE NMR Experiments”, J. Am. Chem. Soc., 145, 6289–6298 (2023).
76. R. P. Martinho, G. L. Olsen and L. Frydman, “CEST-based Detection of Labile Protons by Single-shot, Ultrafast 2D NMR", J. Magn. Reson Open, 14-15, 100096 (2023).
77. D. Petrosyan, J. Fortágh, G. Kurizki. Coherent interface between optical and microwave photons on an integrated superconducting atom chip. EPJ Quantum Technology, 11(1), 1-13 (2024).
78. N.E. Palaiodimopoulos, M. Kiefer-Emmanouilidis, G., Kurizki, and D. Petrosyan. Excitation transfer in disordered spin chains with long-range exchange interactions. SciPost Physics Core, 6(1), 017 (2023).
79. A. Alessio, E. Bernardi, E. Moreva, I. P. Degiovanni, M. Genovese, M. Truccato, Limitations of Bulk Diamond Sensors for Single-Cell Thermometry, Sensors, 24(1), 200 (2024).
80. E. Canonici, S. Martina, R. Mengoni, D. Ottaviani, F. Caruso. Machine Learning based Noise Characterization and Correction on Neutral Atoms NISQ Devices. Adv. Quantum Technol. 7, 2300192 (2024).
Open-access publications partially related to PATHOS
81. Stefano Gherardini, Francesco Campaioli, Filippo Caruso, Felix C. Binder. Stabilizing open quantum batteries by sequential measurements. Phys. Rev. Research 2, 013095 (2020)
82. Chiara Marletto, Vlatko Vedral, Salvatore Virzì, Enrico Rebufello, Alessio Avella, Fabrizio Piacentini, Marco Gramegna, Ivo Pietro Degiovanni, Marco Genovese. Non-Monogamy of Spatio-Temporal Correlations and the Black Hole Information Loss Paradox. Entropy 22, 228 (2020)
83. M. Genovese and M. Gramegna. Quantum Correlations and Quantum Non-Locality: A Review and a Few New Ideas. Applied Sciences 9, 5406 (2019)
84. M. Gramegna and M. Genovese. Special Issue on Quantum Optics for Fundamental Quantum Mechanics. Applied Sciences 10, 3655 (2020)
85. S. Ditalia Tchernij, E. Corte, T. Luhmann , P. Traina , S. Pezzagna, I. P. Degiovanni, G. Provatas, E. Moreva, J. Meijer, P. Olivero, M. Genovese and J. Forneris. Spectral features of Pb-related color centers in diamond - a systematic photoluminescence characterization. New J. Phys. 23, 063032 (2021)
86. S. Ditalia Tchernij et al. Fluorine-based color centers in diamond. Sci. Rep. 10 21537 (2020)
87. I. Meirzada et. al.. Long-Time-Scale Magnetization Ordering Induced by an Adsorbed Chiral Monolayer on Ferromagnets. ACS Nano 15, 3, 5574-5579 (2021).
88. Y. Romach et. al. Long range magnetic dipole-dipole interaction mediated by a superconductor. Phys. Rev. Research 3, 033280 (2022).
89. I. Meirzada et. al. Finding the nitrogen-vacancy singlet manifold energy level using charge conversion pulse sequences. Eprint arXiv:2011.08537, Phys. Rev. B 104, 155413 (2021).
90. I. Mastroserio, S. Gherardini, C. Lovecchio, T. Calarco, S. Montangero, F.S. Cataliotti, F. Caruso. Experimental realiation of optimal time-reversal on an atom chip for quantum undo operations. Adv. Quantum Technol. 5, 2200057 (2022) – selected as journal back cover picture.
91. S. Gherardini, A. Belenchia, M. Paternostro, and A. Trombettoni. End-point measurement approach to assess quantum coherence in energy fluctuations. Eprint arXiv:2106.06461, Phys. Rev. A 104, L050203 (2021).
92. D. Martella, M. Mannelli, R. Squecco, R. Garella, E. Idrizaj, D. Antonioli, M. Laus, D.S. Wiersma, T. Gamberi, P. Paoli, C. Parmeggiani, T. Fiaschi. Cell instructive Liquid Crystalline Networks for myotube formation. iScience 24, 103077 (2021).
93. L.T. Knoll, G. Petrini, F. Piacentini, P. Traina, S.V. Polyakov, E. Moreva, I.P. Degiovanni, and M. Genovese, Photon Statistics Modal Reconstruction by Detected and Undetected Light. Adv. Quantum Technol. 6, 2300062 (2023).
94. T. Opatrný, Š. Bräuer, A. G. Kofman, A. Misra, N. Meher, O. Firstenberg, E. Poem, and G. Kurizki. Nonlinear coherent heat machines. Science advances, 9(1), p.eadf1070 (2023).
95. Ty Zabelotsky, Sourabh Singh, Galya Haim, Rotem Malkinson, Shima adkhodazadeh, Ilya P. Radko, Igor Aharonovich, Hadar Steinberg, Kirstine Berg-Sørensen, Alexander Huck, Takashi Taniguchi, Kenji Watanabe, and Nir Bar-Gill, Creation of Boron Vacancies in Hexagonal Boron Nitride Exfoliated from Bulk Crystals for Quantum Sensing, ACS Appl. Nano Mater. 2023, 6, 23, 21671–21678
82. Chiara Marletto, Vlatko Vedral, Salvatore Virzì, Enrico Rebufello, Alessio Avella, Fabrizio Piacentini, Marco Gramegna, Ivo Pietro Degiovanni, Marco Genovese. Non-Monogamy of Spatio-Temporal Correlations and the Black Hole Information Loss Paradox. Entropy 22, 228 (2020)
83. M. Genovese and M. Gramegna. Quantum Correlations and Quantum Non-Locality: A Review and a Few New Ideas. Applied Sciences 9, 5406 (2019)
84. M. Gramegna and M. Genovese. Special Issue on Quantum Optics for Fundamental Quantum Mechanics. Applied Sciences 10, 3655 (2020)
85. S. Ditalia Tchernij, E. Corte, T. Luhmann , P. Traina , S. Pezzagna, I. P. Degiovanni, G. Provatas, E. Moreva, J. Meijer, P. Olivero, M. Genovese and J. Forneris. Spectral features of Pb-related color centers in diamond - a systematic photoluminescence characterization. New J. Phys. 23, 063032 (2021)
86. S. Ditalia Tchernij et al. Fluorine-based color centers in diamond. Sci. Rep. 10 21537 (2020)
87. I. Meirzada et. al.. Long-Time-Scale Magnetization Ordering Induced by an Adsorbed Chiral Monolayer on Ferromagnets. ACS Nano 15, 3, 5574-5579 (2021).
88. Y. Romach et. al. Long range magnetic dipole-dipole interaction mediated by a superconductor. Phys. Rev. Research 3, 033280 (2022).
89. I. Meirzada et. al. Finding the nitrogen-vacancy singlet manifold energy level using charge conversion pulse sequences. Eprint arXiv:2011.08537, Phys. Rev. B 104, 155413 (2021).
90. I. Mastroserio, S. Gherardini, C. Lovecchio, T. Calarco, S. Montangero, F.S. Cataliotti, F. Caruso. Experimental realiation of optimal time-reversal on an atom chip for quantum undo operations. Adv. Quantum Technol. 5, 2200057 (2022) – selected as journal back cover picture.
91. S. Gherardini, A. Belenchia, M. Paternostro, and A. Trombettoni. End-point measurement approach to assess quantum coherence in energy fluctuations. Eprint arXiv:2106.06461, Phys. Rev. A 104, L050203 (2021).
92. D. Martella, M. Mannelli, R. Squecco, R. Garella, E. Idrizaj, D. Antonioli, M. Laus, D.S. Wiersma, T. Gamberi, P. Paoli, C. Parmeggiani, T. Fiaschi. Cell instructive Liquid Crystalline Networks for myotube formation. iScience 24, 103077 (2021).
93. L.T. Knoll, G. Petrini, F. Piacentini, P. Traina, S.V. Polyakov, E. Moreva, I.P. Degiovanni, and M. Genovese, Photon Statistics Modal Reconstruction by Detected and Undetected Light. Adv. Quantum Technol. 6, 2300062 (2023).
94. T. Opatrný, Š. Bräuer, A. G. Kofman, A. Misra, N. Meher, O. Firstenberg, E. Poem, and G. Kurizki. Nonlinear coherent heat machines. Science advances, 9(1), p.eadf1070 (2023).
95. Ty Zabelotsky, Sourabh Singh, Galya Haim, Rotem Malkinson, Shima adkhodazadeh, Ilya P. Radko, Igor Aharonovich, Hadar Steinberg, Kirstine Berg-Sørensen, Alexander Huck, Takashi Taniguchi, Kenji Watanabe, and Nir Bar-Gill, Creation of Boron Vacancies in Hexagonal Boron Nitride Exfoliated from Bulk Crystals for Quantum Sensing, ACS Appl. Nano Mater. 2023, 6, 23, 21671–21678
Open-access Preprint arXiv (2024)
96. N. Meher, T. Opatrný, and G. Kurizki. Sensing of quantum nonlinear noise correlations via thermodynamic variables. arXiv preprint arXiv:2310.10081.
97. N. Meher, E. Poem, T. Opatrný, O. Firstenberg, and G. Kurizki. Supersensitive phase estimation by thermal light in nonlinear interferometers. arXiv preprint arXiv:2308.13267.
98. S. Virzì et al., Single-pair measurement of the Bell parameter. arXiv:2303.04787
99. Yachel Ben-Shalom, Amir Hen, Nir Bar-Gill, Modified Split Ring Resonators for Efficient and Homogeneous Microwave Control of Large Volume Spin Ensembles, ArXiv:2309.11130
100. Marlon Brenes, Brett Min, Nicholas Anto-Sztrikacs, Nir Bar-Gill, Dvira Segal, Bath-induced interactions and transient dynamics in open quantum systems at strong coupling: Effective Hamiltonian approach, ArXiv:2403.03386.
101. Sreetama Das, Stefano Martina, Filippo Caruso, The role of data embedding in equivariant quantum convolutional neural networks, Eprint arXiv:2312.13250 (2023).
102. Sreetama Das, Filippo Caruso, Permutation-equivariant quantum convolutional neural networks, Eprint arXiv:2404.18198 (2024).
103. G. Cappiello and F. Caruso. Quantum AI for Alzheimer's disease early screening, Eprint arXiv:2405.00755 (2024).
104. M. Parigi, S. Martina, and F. Caruso. Quantum-Noise-driven Generative Diffusion Models, Eprint arXiv:2308.12013 (2024).
105. Galya Haim Stefano Martina, John Howell, Nir Bar-Gill, and Filippo Caruso. Machine-learning based high-bandwidth magnetic sensing. Paper to be submitted (2024).
97. N. Meher, E. Poem, T. Opatrný, O. Firstenberg, and G. Kurizki. Supersensitive phase estimation by thermal light in nonlinear interferometers. arXiv preprint arXiv:2308.13267.
98. S. Virzì et al., Single-pair measurement of the Bell parameter. arXiv:2303.04787
99. Yachel Ben-Shalom, Amir Hen, Nir Bar-Gill, Modified Split Ring Resonators for Efficient and Homogeneous Microwave Control of Large Volume Spin Ensembles, ArXiv:2309.11130
100. Marlon Brenes, Brett Min, Nicholas Anto-Sztrikacs, Nir Bar-Gill, Dvira Segal, Bath-induced interactions and transient dynamics in open quantum systems at strong coupling: Effective Hamiltonian approach, ArXiv:2403.03386.
101. Sreetama Das, Stefano Martina, Filippo Caruso, The role of data embedding in equivariant quantum convolutional neural networks, Eprint arXiv:2312.13250 (2023).
102. Sreetama Das, Filippo Caruso, Permutation-equivariant quantum convolutional neural networks, Eprint arXiv:2404.18198 (2024).
103. G. Cappiello and F. Caruso. Quantum AI for Alzheimer's disease early screening, Eprint arXiv:2405.00755 (2024).
104. M. Parigi, S. Martina, and F. Caruso. Quantum-Noise-driven Generative Diffusion Models, Eprint arXiv:2308.12013 (2024).
105. Galya Haim Stefano Martina, John Howell, Nir Bar-Gill, and Filippo Caruso. Machine-learning based high-bandwidth magnetic sensing. Paper to be submitted (2024).
Open Access Data
Experimental data sets of NV ODMR scans for training ML models – at the repository link https://doi.org/10.5281/zenodo.7481960.
ML source codes and test data sets for noise sensing – at the following repository links:
https://codeocean.com/capsule/8363708/tree/v1
https://github.com/SoftwareImpacts/SIMPAC-2022-9
NMR data are shared at the following links (also by Bruker):
https://www.weizmann.ac.il/chembiophys/Frydman_group/software
https://www.bruker.com/en/resources/library/application-notes-mr/sensitivity-enhanced-tocsy-noesy-biomolecular-nmr.html
Randomized Composite-Pulse Decoupling for Heteronuclear Saturation Experiments
Cyclic decoupling schemes can lead to strong effects associated to decoupling-sidebands in saturation transfer experiments. These can be dealt with using noise decoupling. But a much more efficient and broadbanded decoupling is achieved by randomizing the power levels/pulse lengths of a train made up by [90x-180y-90x] composite pulse inversions. A script to create such pulse lengths in a more user-friendly fashion using Bruker’s au language has also been written, and can be downloaded (at the user’s responsibility) from the link below. Download deposit_rand_dec.zip
Cross-polarization schemes (L-WURST-CP and TAPF-CP) for improved heteronuclear transfers involving labile protons in biomolecular solution NMR (Bruker spectrometers)
Traditional INEPT-based experiments face challenges with 1H→15N transfers due to solvent exchanges. Our approach leverages the Hwater→HN exchange process to enhance the 1H→15N transfer. However, fulfilling the required spin-locking conditions can be demanding, especially with today's power-limited cryogenic probes. New CP variants, including frequency-swept and phase-modulated pulses, are designed to address these challenges. Both theoretical and experimental performance assessments are conducted on compounds like urea, amino acids, and intrinsically disordered proteins. These strategies offer improved results compared to existing methods, especially in high-field NMR conditions.
This package contains pulse sequences, related wavemaker files, and short instructions for setting up these experiments. Also, Spinach codes are included. cps.zip. Contact: [email protected]