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1  Deep learning enhanced noise spectroscopy 

1.1 NV sensing 

Quantum sensing combines theoretical results with experimental and engineering techniques to carry 
out inference of signals with improved accuracy and/or less computation time by making use of 
quantum physics. In the past years different classes of applications have emerged, employing quantum 
systems as sensors for various physical quantities ranging from magnetic and electric fields, to time 
and frequency, rotations, temperature and pressure. Quantum sensors take advantage of the central 
weakness of quantum systems, i.e. their strong sensitivity to external disturbances, to improve the 
detection of external perturbations with higher accuracy compared to any classic sensor. Notable 
examples include atomic clocks, atomic vapor magnetometers, and superconducting quantum 
interference devices. However, this same property implies that the quantum sensor is subjected to 
detrimental noise stemming from the coupling with its environment. For this reason, it is desirable to 
fully characterize the sensor’s environment, either to filter out its detrimental effect, or to take it into 
account when detecting external signals, for example, in algorithms using quantum optimal control. 
On the other side, neural networks (NNs) could be a powerful tool to infer the sensor’s environment. 
In this context, deep learning has been already proposed theoretically for the classification and 
detection of quantum noise features, and employed experimentally for different tasks. NNs are 
algorithmic models provided by the interconnection of a group of nodes commonly called neurons 
whose weights are trained to optimize the model output given an input in form of features values. The 
optimization is usually performed with gradient descent techniques and the outputs can be categorical 
for classification tasks or continue for regression tasks. In our work (recently published as S. Martina, 
S. Hernández-Gómez, S. Gherardini, F. Caruso, N. Fabbri. Deep learning enhanced noise 
spectroscopy of a spin qubit environment. Mach. Learn.: Sci. Technol. 4 02LT01, 2023), we 
theoretically and experimentally demonstrated that NNs can be used to process the data obtained by a 
qubit, operating as a quantum sensor, and then reconstruct the noise spectrum that induces dephasing 
into the qubit itself. In particular, we focused on a qubit under dynamical decoupling (DD) control 
sequences in the presence of classical random noise with an unknown power density spectrum, usually 
denoted as noise spectral density (NSD). 
 

 
We numerically tested our machine learning (ML) algorithms and we also used a single NV center in 
diamond as a spin qubit sensor to theoretically and experimentally perform a spectroscopic 
reconstruction of the magnetic noise of its local environment. The NV center represented in the left 
part of Figure 1, surrounded by a depiction of the environment, is constituted by a lattice of 13C carbon 
atoms with a defect in the structure where a carbon atom is substituted by a nitrogen atom and a 
vacancy who act as a qubit. The environment comprises 13C nuclear spins randomly distributed in the 
diamond lattice. The undesired interaction of a quantum system with its environment generally leads 
to a coherence decay of superposition states in time. The dephasing affecting the qubit sensor is 
analyzed by applying a set of DD control pulses that realize filter functions in the frequency domain. 

 
 

Figure 1: NV center and Neural Networks for noise spectroscopy. 
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 A widely used DD control pulse is the Carr–Purcell (CP) sequence that is given by N equidistant π 
pulses, performed between an initial and a final π/2 pulse. With this protocol, the requirement to 
achieve high values of the noise reconstruction accuracy is to perform sequences with a high number 
of pulses meaning N ∈ [30, 120] or even higher. This usually leads to long experiments to reconstruct 
the whole spectrum of the noise. Other techniques using non-equidistant or even more sophisticated 
DD sequences have proved to be effective for noise sensing, but sometimes at the price of a higher 
computational burden. 
 
For our sensing task, NNs are designed to solve a multi-regression problem, i.e. the reconstruction of 
the NSD. We assume that the NSD of the bath of spins has a Gaussian profile. The Gaussian NSD is 
thus parametrized as a function of key parameters, i.e. the mean value, variance, offset and noise 
power that we aim to predict. The NNs were trained over a set of synthetic data generated by 
simulating how the coherence of the qubit sensor decays over time under the influence of both the CP 
control pulses and the NSD. Moreover, to make the measurement statistics as close as possible to the 
ones obtained from the experiments, extra artificial errors sampled from a normal distribution were 
added. 
 
Our approach using NNs entails the following advantages that we have proven experimentally:  

(i) NNs have the capability to predict never-before-seen experimental data, and they can 
work with a better reconstruction accuracy (even up to seven times better) than standard 
noise spectroscopy, as the Álvarez–Suter method, by making use at the same time of DD 
control sequence with a much smaller number of pulses.  

(ii) The training dataset, which can contain both synthetic and experimental data, is 
generated just once and then it can be applied several times, as long as the new collected 
data reproduce the physical context under analysis. The amount of data used as input to 
the NNs can be smaller than the one needed to resolve the NSD by means of standard 
noise spectroscopy methods. 

 
To the best of our knowledge, our work is the first experimental proof of enhanced reconstruction 
performance with NNs for carrying out noise spectroscopy in single color centers in diamond. We 
thus expect that the techniques discussed there could fast become a novel standard spectroscopy tool 
both for such quantum systems and other quantum platforms in which regression problems have to be 
solved. 
 
We carried out noise spectroscopy with a quantum sensor using DD sequences with a much smaller 
number of π pulses and, at the same time, achieving a higher reconstruction accuracy than standard 
methods. This means that with our proposal the noise spectroscopy procedure will take less time and 
give better results. More in detail, we experimentally demonstrate the capability of NNs to reconstruct 
the NSD of the collective nuclear spin bath that surrounds an electronic spin qubit, i.e. the ground 
state of a single NV center in bulk diamond at room temperature. We are also confident that the extent 
of our results can be quite easily replicated in other experimental settings, as e.g. superconducting flux 
qubits, trapped ions, cold atoms, quantum dots, nuclear magnetic resonance (NMR) experiments in 
molecules, and nanoelectronic devices. For such a purpose, one might slightly adapt the deep learning 
techniques used in our work to methods tailored for time series. To facilitate this task we shared via 
GitHub the source code along with the (gold open-access) paper, available at 
https://github.com/trianam/noiseSpectroscopyNV. 
 

1.2 Results and analysis 

The training dataset is composed of synthetic data that are originated by simulating the coherence 
decay of the qubit sensor in a noise spectroscopy experiment based on DD, as the one depicted in 
Figure 1. This standard sensing procedure, which stems from Ramsey interferometry, maps 
information about the quantum coherence of the sensor into the population in |0⟩ that is then effectively 

https://github.com/trianam/noiseSpectroscopyNV
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recorded. The probability that the state of the quantum sensor is |0⟩, which corresponds to the 
observable population, equals to 

𝑃 =
1
2 '1 + 𝐶

(𝜏, 𝑁)/, 
where N is the number of π pulses and τ is the time between them. The coherence function C(τ, N) 
was simulated numerically, for a set of different values of τ and N, to generate the training dataset. In 
order to simulate the data, the NSD S(ω) is parameterized as 
 

𝑆(𝜔) = 𝑠! + 𝐴𝑒𝑥𝑝 7
−(𝜔 − 𝜔")#

2𝜎# :. 

 
Thus, being a Gaussian distribution, the NSD is fully described by the offset𝑠!, amplitude A, width σ 
and center𝜔". For the training dataset in our work, the values of these parameters were taken randomly 
from defined intervals. Instead, 𝜔" was kept constant because it depends on the known static magnetic 
field aligned with the NV quantization axis z. The training dataset was generated by uniformly 
sampling 10$ sets of parameters within the chosen intervals, each one used to simulate a different 
choerence curve 𝐶(𝜏, 𝑁)for a different set of τ and N. Finally, in order to make the synthetic 
data used to train the NNs closer to the experimental setting, extra artificial errors sampled from a 
normal distribution, comparable with the expected error in our experimental measurements, were 
added to every point of the generated coherence decay curves. From the 10000 simulated curves, 6000 
are used for the training of the NNs and 2000 for their validation. Instead, the test step is performed 
either by using the remaining 2000 simulated curves, or by using experimental data. 
 
As first analysis, we trained ML models to infer the value of the NSD parameters 𝑠!, A, σ from the 
coherence functions and we tested such models on simulated data with different parameters to evaluate 
the Mean Squared Error (MSE) between the latters and the predicted values. In order to determine the 
smallest amount of data required to reconstruct the NSD, we perform the training, validation and test 
of the NNs with sub-sets of the simulated curves. These sub-sets are defined by introducing the 
variable 𝑁̄ that denotes the upper bound for the number of pulses 𝑁 ⩽ 𝑁̄considered during the whole 
process. The sub-sets defined for each value of 𝑁̄ contain the curves for all the times τ and for all the 
different NSD parameters in the training, validation and test sets. In detail, the input of the NN is 
defined as the concatenation of all the values of C(τ, N), for all values of τ and for 𝑁 = 1, . . . , 𝑁̄. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results of this analysis is shown in Figure 2 with the orange circles. Remarkably, the MSE seems 
to achieve its minimum value afterN̄ = 16. This entails that the NNs do not significantly improve 
their precision on the reconstruction of the NSD by using more data to train them beyond this point. 

 
Figure 2. Mean-square-errors (MSEs) between original and estimated NSD parameters for a 
set of 2000 simulated test cases. Orange bullets with dash-dotted line are the mean values 
returned by NNs. Blue squares with dotted line are the mean values provided by the HS 
method. Shaded areas denote the standard deviation of all the cases. 
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To establish how accurately an NN reconstructs the NSD, we compared the corresponding results with 
those of a different commonly adopted method denoted as harmonics spectroscopy (HS). We have 
analyzed the same 2000 different curves C(τ, N) used to test the ML models also with the HS method 
and the results are shown in Figure 2 with the blue squares. The MSE values for the HS method are 
always above the MSE values for the NN method, especially for lower values of N̄. These results 
demonstrate that the NN method can predict the parameters of the NSD with an improved accuracy 
(up to five times larger) with respect to the HS method. 
 
As second analysis, we used the NNs, trained and validated with noisy simulated data, to reconstruct 
the NSD from experimental data. In contrast with the tests using simulated data, in the experimental 
case we do not know the exact values of the NSD parameters. Therefore, we cannot calculate the MSE 
to quantify the accuracy of the reconstructed parameters. In order to estimate such accuracy we have 
used the following procedure: from the inferred NSD, the coherence curves C(τ, N) are simulated and 
then compared with the curves collected from experimental results. An example of this comparison is 
shown in Figure 3(a), where C(τ, N) is simulated under the assumption that the NSD parameters are 
inferred either by the ML models (orange) or by the HS method (red), both for 𝑁̄ = 16. Qualitatively, 
it is clear that the orange curves are much closer to the experimental data, than the red curves. To 
quantitatively compare the experimental data and the simulation results, we used both the reduced chi-
squared and the MAE between the experimental data and the predicted coherence functions C(τ, N). 
The results of this comparison are shown in Figure 3(b). Remarkably, the NSD reconstructed by the 
NN for 𝑁̄ = 16 behaves better that any case using the HS method. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We demonstrated that NNs can be used to reconstruct the NSD affecting a quantum sensor, achieving 
higher precision and with considerable less data than the standard HS method. Improved values of 
the reconstruction accuracy have been obtained with simulated and experimental data. Both the HS 
and NN methods are comparable—in terms of NSD reconstruction accuracy—for high values of 𝑁̄, 
but not for small ones, where NNs give significantly better results. The main result of our investigation 
is that NNs trained with data obtained for 𝑁̄ = 16 reconstruct the NSD more accurately than the best 
estimate provided by the HS method with 𝑁̄ = 48. This improvement is remarkable by itself, but it 
becomes more significant when we consider that the time required to complete these experiments has 
a growth faster than a linear function with respect to 𝑁̄, following an arithmetic progression. 

 
 
Figure 3: (a) Coherence function C(τ, N). The experimental data (blue bullets) are shown 
together with the simulated ones using the NSD predicted respectively by the HS method (red 
lines) and ML models (orange lines), both for 𝑁̄ = 16. (b) Reduced chi-squared 𝜒!", obtained 
by comparing simulation and experimental data, as a function of 𝑁̄. orange and red curves 
refer to the NN and HS method, respectively. Instead, the dashed line denotes the value of the 
reduced chi-squared for the HS method when we employ additional measurements. In the 
inset: same results but quantified by the mean-absolute-error (MAE). 
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2  Machine-learning based high-bandwidth magnetic sensing 

2.1 Magnetic Sensing 

Quantum technologies have emerged as an important platform relevant for a broad range of fields, 
such as quantum communications and quantum sensing. These advances have been driven by the 
development of experimental realizations exhibiting useful properties. In the context of quantum 
sensing, one of the leading systems is based on Nitrogen Vacancy (NV) color centers in diamond, 
which provide a versatile platform for diverse quantum sensing, notably magnetic sensing. NVs have 
found important applications in magnetic sensing, covering paleomagnetometry, biosensing, nuclear 
magnetic resonance and more. Quantum sensing with NVs is realized through spin resonance 
measurements, usually detected optically. While this approach achieves quantitative vectorial 
information with high sensitivity and spatial resolution, it suffers from a trade-off between sensitivity 
and bandwidth, specifically in the high dynamic range regime. In fact, that working with small fields 
(small dynamic range) enables an optimal sensing strategy, which relies on precise measurements at 
a predetermined high-sensitivity point (the point of maximal signal gradient). However, this is not 
possible in the regime of large dynamic range signals.  
In our work (G. Haim, S. Martina, N. Bar-Gill, F. Caruso, paper in preparation), being a collaboration 
between two PATHOS partners (UNIFI and HUJI), we addressed this limitation and introduced a ML 
algorithm which significantly improves this trade-off. We demonstrate experimentally that training an 
appropriate neural network using a combination of real data and simulated data enables a clear 
improvement in measurement bandwidth for a given sensitivity goal, in the large dynamic range 
scenario. 
 

2.2 Experimental setup 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The ground state of NV centers (Figure 4) is an effective two-level quantum system. Under green laser 
excitation, it is possible to initialize the spin to the ms = 0 ground state. In detail, the population 
occupying ms = 0 would reach the excited state manifold and decay back to the ground state ms = 0, 
emitting a red photon. The population occupying ms = ±1 is more likely to decay through the singlet 
state, to ms = 0 in a non-radiative way. Within the ground state, spin manipulation is possible with 
resonant Microwave (MW) pulses, population transfer to ms = ±1 would lead to a drop in measured 
fluorescence. 
 
 

Figure 4: (a) Experimental setup schematic; Green excitation laser illuminating a diamond 
sample, fluorescence from NV centers is collected and read by a detector. (c) NV can hold 
four possible orientations within the diamond. (b) NV energy level schematic. 
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In the presence of an external magnetic field, degeneracy is lifted off the ms = ±1 due to Zeeman shift, 
the shift is given by γB∥ , where γ is the gyromagnetic ratio of the NV and B∥ is the external magnetic 
field component parallel to the NV axis. In the diamond lattice, there are four possible crystallographic 
orientations the NV can take, and so, in the presence of a magnetic field that is not aligned with any 
of the orientations, there will be eight resonance frequencies, two for each orientation. Once these 
frequencies are known, the vectorial magnetic field can be calculated. 
 

2.3 Results 

Our basic approach relies on training a ML model to enable efficient identification of the positions of 
the resonances in the measured signal, from which the magnetic field information is extracted. We 
employ a relevant Multi Layer Perceptron (MLP) model, and compare it to regular raster scanning as 
a function of the number of scan points (subsampling). To evaluate the proposed approach in an 
experimental setting, we trained ML models with real experimental data augmented with synthetic 
samples. Ninety six full raster scans were measured in an epi-illumination wide field setup, each one 
under a different magnetic field (i.e. different resonance frequencies). 
 
To generate synthetic data we simulated measurements based on a simplified NV Hamiltonian 
considering Zeeman shift, projecting varying magnetic fields of ∼ 100G on the four NV orientations, 
with added Gaussian noise, mimicking contrast and line shape (eight Lorentzians) as in the real 
(measured) data. We simulate a range of magnetic field strengths at various angles (θ and ϕ, 
respectively longitudinal and azimuthal, with respect to the diamond surface), and we use the resulting 
simulated data for which we produce full ESR spectrums with six or eight Lorentzians. 
 
The ML models are trained on subsamplings of the full ESR spectrum. To do that, starting from the 
full 600-measures spectrum, we take every other point, every third point and so on, obtaining at the 
end spectrums with 300 measures, 200 measures and so on. The error for the ML prediction is defined 
as the averaged absolute value of the distances between the ML output to the resonance locations 
extracted from the full scans of the real data or from the ground truth used to generate the simulated 
data. To provide a fair comparison, a similar process was done for raster scans: the resonances 
extracted from the subsampled data are compared to the ones extracted from the full real data or with 
the ground truth used in the simulations. 
 
 

 
 

 
 
Figure 5: Neural network (green) and raster scan (blue) error as a function of the number of measurement 
points in the data. The error is calculated with the Mean Absolute Error (MAE) for the neural networks and 
normalized dividing by the square root of the success probability for the raster scan. 
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Figure 5 depicts as a function of the number of measurements the error and the normalized error of 
ML and raster scan respectively. The neural network (green) was trained on a full length dataset (600 
frequency points) with 10000 samples and validated with 2000 samples to find the optimal 
hyperparameters. After the training, the network was introduced with other 2000 subsampled data to 
calculate the values of the plot. The same 2000 samples were used to test raster scanning as a function 
of number of data points. The subsampled data used for the neural network validation and for the test 
of either the network and the raster scanning were first linearly interpolated to 600 data points before 
its use. The network provides a better result compared to the raster scan, even for the full number of 
data points the ML averaged error is 20 KHz better. As the number of points decreases, the average 
error does increase and so does the standard deviation; however, the ML error scales better and 
performs impressively well with an error of about 1 MHz with just 10 percent of the data points. 
 

 
 
We trained another neural network as a comparison to subsampling of the real data. The same 46 
samples that were used for validation, were subsampled and the normalized mean error is depicted in 
blue in Figure 6. By contrast, in red in the same figure we report the evaluation of the network trained 
on the different subsampled datasets. These results show again the better scaling of the network error, 
although for a high number of points the network error is about 0.5 MHz worse than the raster. The 
raster scan of Figure 6 shows slightly better results respect to the raster results in Figure 5, this can be 
explained with the fact that all the real data in the former had eight distinguishable Lorentzians, and 
had high SNR, where in the simulated data in Figure 5 not all samples have eight Lorentzians, and the 
SNR is randomly sampled within a range. 

 

2.4 Discussion and Conclusions 

In this work we demonstrated that is possible to adopt ML models to retrieve a full ESR spectrum. 
We present the limitations of sub sampled raster scan and how the measurement error behaves as a 
function of SNR and linewidth. We show the flexibility and advantages of training the network in 
different ways: interpolating and using data with a range of noise and width. The ML models are more 
robust to subsampling the data respect to the raster scan. In this way, they can be effectively used as 
a method to reduce the number of experimental measurements. Moreover the ML model works 
even in the presence of overlapping Lorentzian peaks. We observed that training the neural network 
with more data reduces the error and the standard deviation. 

 
 
Figure 6: Comparison between MAE of neural networks and normalized error of raster scans for different 
number of data points. In red the dataset contained 1000 synthetic samples and 50 real data samples, 
validation was done with 46 real data samples. The same 46 raster were subsampled, the averaged error for 
those is depicted in blue. 
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3  ODMR spectroscopy on complex/biological systems 

The fundamental principle underlying Optically Detected Magnetic Resonance (ODMR) spectroscopy 
lies in the phenomenon of electron spin resonance (ESR), where the spin angular momentum of 
electrons interacts with an external magnetic field. This interaction leads to characteristic resonance 
frequencies, which ODMR spectroscopy exploits to extract detailed information about the spin 
dynamics and magnetic properties of the system under investigation. ODMR spectrum analysis has 
emerged as a powerful technique in the study of biological systems, offering unique insights into the 
behavior of biomolecules and their interactions with magnetic fields. Overall, ODMR spectrum 
analysis holds great promise for advancing our understanding of biological systems at the molecular 
and cellular levels. By probing the magnetic properties of biomolecules with precision and sensitivity, 
this technique opens up new avenues for research in areas such as biophysics, biochemistry, and 
biomedical engineering, with potential applications ranging from drug discovery to neurobiology. 
This work, being a collaboration between two PATHOS partners (INRIM and UNIFI), goes beyond 
the proof-of-principle results discussed in Sec. 1 and 2 of this report, towards real tests in biological 
environments. 
 
A common limit of ODMR analysis is the necessity of an high number of measurement and this 
traduces in an increased experimental cost. In our work we are interested in characterizing ODMR 
spectra with the aid of ML tools and improve the current state of the art technique by reducing the 
experimental measurement time.  
 
 

 
 
 
A Single ODMR spectrum has the form of the one in Figure 7. A set of around 600 single sweeps are 
averaged to reconstruct one ODMR spectrum. To calculate the  external magnetic field, we are 
interested in the position of the two minimum. In order to train ML models for this task, it is necessary 
to have an high number of training samples. The available experimental data As the experimental 
measurements are expensive to obtain, thus we decided to integrate the real data with synthetic one in 
the form of mixture of two Gaussians plus a shift and with an added noise similar to the one observed 
in the real data. 

 
 
Figure 7: Real single sweep of the ODMR spectrum (on the left) and the average of different sweeps (on the 
right). 
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In Figure 8 we show one of the simulated spectra. 
We trained different linear regression models on both simulated and real data to predict the two 
minimum in the spectrum. In order to evaluate our approach in the context of reducing the 
experimental cost, we scaled the capabilities of the model on less sweeps for the spectrum 
reconstruction. 
 

In Figure 9 we report the results, in the form of Mean Absolute Error of linear regression models 
predictions compared to the number of sweeps that were used to reconstruct a single ODMR spectrum. 
The models were trained on different datasets with both real and synthetic data in different 
proportions. Also the composition of the test set is different for the different curves. It can be 
completely real or synthetic. We can observe that the model with the less error is the one trained only 
on the real data. Regarding this, we should consider that  the real data do not present an high variance 
in the peaks position. This means that the possible overfitting of the ML model is not visible with this 
data. Conversely, we can observe, both on real and synthetic data, that the ML models are robust to 
sweeps reductions. In other words, it is possible to use the ML model to predict the peak values using 
less measurements respect to the standard fitting procedure. This can be a useful property in an 
experimental context and can be associated with a reduction in measurement time and experiment 
cost. 

 
 
Figure 8: Example of a synthetic single sweep (on the left) and the average of different synthetic sweeps (on 
the right). 

 
 
Figure 9: Results of the linear regression training for different kinds of dataset. 
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Moreover this is even more important in the frame of the NV-assisted biosensing, which is in the 
objectives of the PATHOS project, as the possibility to reduce as much as possible the laser exposure 
time emerges as a very relevant feature. In fact, in order to keep the data acquisition as biocompatible 
as possible it is desirable that the delicate biological samples are subjected to low laser intensity and 
limited to short exposure time. In this sense the use of ML algorithms represents an advantage not 
only in terms of experiment cost and resources but specifically it opens more interesting scenarios as 
it allows performing measurements of systems that would not be possible to probe more 
conventionally without altering the cells’ functionality.  
 
 
Collaboration has, indeed, started between INRIM and UNIFI units in order to implement this ML 
assisted sensing in biological environment. In particular INRIM adapted their single-photon sensitive 
confocal facility for the study of optical emitters in diamond (as the one represented in Figure 4) in 
order to render it compatible to ODMR measurements of biological samples (e.g. including incubator, 
inverted microscope, perfusion system, thermocouples, wide-field camera, Faraday cage, etc). The 
sensing activity is currently focused on mice hippocampal neurons and RAMOS cells and the goal is 
to perform biocompatible intracellular ODMR-based thermometry to investigate models of 
temperature dysregulation in cells in relation to cell disfunctions. A picture of the experimental 
ODMR set-up dedicated to biological sensing is reported in Figure 10. 
 
 
 

 

 
Figure 10: Picture of ODMR bio-sensing set-up built at INRiM laboratories. 

 
 


